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There have been rapid developments in the direct calculation in lattice QCD (LQCD) of the Bjorken-x

dependence of hadron structure through large-momentum effective theory (LaMET). LaMET overcomes

the previous limitation of LQCD to moments (that is, integrals over Bjorken x) of hadron structure,

allowing LQCD to directly provide the kinematic regions where the experimental values are least known.

LaMET requires large-momentum hadron states to minimize its systematics and allow us to reach small-x

reliably. This means that very fine lattice spacing to minimize lattice artifacts at order ðPzaÞn will become

crucial for next-generation LaMET-like structure calculations. Furthermore, such calculations require

operators with long Wilson-link displacements, especially in finer lattice units, increasing the commu-

nication costs relative to that of the propagator inversion. In this work, we explore whether machine-

learning algorithms can make predictions of correlators to reduce the computational cost of these LQCD

calculations. We consider two algorithms, gradient-boosting decision tree and linear models, applied to

LaMET data, the matrix elements needed to determine the kaon and ηs unpolarized parton distribution

functions (PDFs), meson distribution amplitude (DA), and the nucleon gluon PDF. We find that both

algorithms can reliably predict the target observables with different prediction accuracy and systematic

errors. The predictions from smaller displacement z to larger ones work better than those for momentum p

due to the higher correlation among the data.
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I. INTRODUCTION

In the early days, probing hadron structure with lattice

QCD (LQCD) was limited to only the first few moments,

due to complications arising from the breaking of rotational

symmetry by the discretized Euclidean spacetime. The

nonzero lattice spacing breaks the symmetry group of

Euclidean spacetime from Oð4Þ to the discrete hypercubic

subgroup Hð4Þ. Due to the reduced symmetry, the required

operators are more complicated and often either suffer from

divergences or mix with other operators under renormal-

ization. This is treatable but complicated. As a result, even

with increasing computational resources becoming avail-

able to the lattice-QCD community, LQCD hadronic

structure calculations were limited to the lowest few

moments (see Refs. [1,2] and references within for more
details). Although modeling the x dependence to reproduce
the calculated lattice moments to gain information on the
x dependence [3] was attempted, this will only give the

combinations of the difference between quark and anti-
quark contributions rather than individual (anti)quark con-
tributions. Experiments such as E665 at FNAL can probe

nucleon sea flavor asymmetry, meaning that lattice QCD
would be excluded if it could only apply traditional

moment calculations. Similarly, STAR at RHIC is probing
the polarized (anti)quark structure of nucleon. The future

electron-ion collider will further study sea structure. Facing
these challenges, LQCD required a new computationally
friendly approach to extend its applicability to calculations

of PDFs and catch up with ongoing experimental efforts.
Large-momentum effective theory (LaMET) [4] is one

of the most widely adopted new methods for calculating

the full x dependence of hadron structure. In the LaMET
framework, we take an operator containing an integral of

gluonic field strength along a line and boost the nucleon
momentum toward the speed of light, tilting the spacelike

line segment toward the light-cone direction. The time-
independent, nonlocal (in space) correlators at finite Pz can
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be directly evaluated on the lattice. For example, the quark
unpolarized distribution of a hadron can be calculated via

qlatðx;μ;PzÞ¼
Z

dz

4π
eizk×hP⃗jψ̄ðzÞΓ

�

Y

n

UzðnẑÞ
�

ψð0ÞjP⃗i;

ð1Þ

where Uz is a discrete gauge link in the z direction, Γ ¼ γt,

x ¼ k=Pz, μ is the renormalization scale and P⃗ is the
momentum of the hadron, taken such that Pz → ∞. The
qlatðx; μ; PzÞ, often called the “quasi-PDF” [5], is related to
the light-cone PDF through a factorization theorem, where
the former can be factorized into a perturbative matching
coefficient and the latter, up to power corrections sup-
pressed by the nucleon momentum. This factorization
theorem is founded in LaMET [4,6–9], where the matching
coefficient can be calculated exactly in perturbation theory.
Lattice-QCD results using LaMET already include the
isovector quark PDF of the nucleon [10–14], the pion
generalized parton distribution [15], the meson distribution
amplitudes (DAs) [16,17] and the nonperturbative renorm-
alization in the regularization-independent momentum
subtraction scheme [18,19]. Certain technical issues regard-
ing the nonperturbative renormalization were raised and
addressed in Refs. [14,18–23]. The finite-volume effect in
nucleon quasi-PDF was studied in [24].

Even with these promising results published and efforts

ongoing, much work remains to be done. For example,

most work so far has been limited to a single ensemble;

more detailed studies incorporating the systematic errors

from lattice artifacts, such as finite-volume and lattice

spacing, is necessary to reach precision LQCD PDFs.

Larger boost momentum in the hadron is important to

suppress finite-momentum corrections, as well as getting

the antiquark distribution and small-x quark distribution

corrections. Ensembles with smaller lattice spacing

(a−1 > 4 GeV) will become the crucial factors in the next

generation of LaMET calculations. To reach larger boost

momentum Pz, a smaller lattice spacing is needed to

control the ðPzaÞn lattice artifacts, similar to how heavy-

quark studies must control the heavy-quark mass artifacts at

order ðmqaÞn. Likely, more than Oð100; 000Þ calculations
will be needed to get a good signal-to-noise for the three-

point correlators and allow us to disentangle the excited

states from the ground state. A larger number of degrees

of freedom will be necessary to keep the finite-volume

systematic within the consensus optimal region, MπL ≈ 4.

More communication costs will be incurred transporting

the Wilson link from one side of the lattice to the other,

which can easily become a dominating cost for the

calculation. Although optimizing communication effi-

ciency may address the latter problem, we are hoping to

find a method that will work for both the large-momentum

and Wilson-link displacement issues that are characteristic

of LaMET and its similar approaches.

Recently, authors of Ref. [25] introduced a machine-

learning (ML) approach predicting observables by taking

advantage of the correlations between lattice-QCD observ-

ables. Two types of data with high-statistics measurements,

Oð100; 000Þ, were used in the studies: nucleon isovector

charges and the CP-violating phase induced by the quark

chromoelectric dipole moment interactions. The authors

found a reduction in the computational cost by 7%–35%,

depending on observable, showing very promising poten-

tial for lattice-QCD applications. In this work, we are

interested in finding out how well the ML approach would

work with the difficult computational situation in LaMET-

type observables and whether computational cost can be

saved for future large lattices (say, 643 × 192 and above).

Although this paper focuses on the discussion with quasi-

PDF, what we learn here also applies to the pseudo-PDF
1

[27–30] correlators since the building blocks of matrix

elements are the same.

The structure of this paper is as follows: In Sec. II we

briefly describe the two ML algorithms used in this work.

Section III demonstrates the application of both algorithms

to LaMET-type observables, including the correlators from

the meson distribution amplitude, kaon and ηs parton

distribution functions and nucleon gluon parton distribution

function. We compare results of the ML predictions. We

summarize the conclusions and future prospects of this

work in Sec. IV.

II. MACHINE-LEARNING ALGORITHM

ML works by optimizing a prediction model mapping

between input and output data, creating a function approxi-

mating the relationship between them, inferred from data.

The model is built from a set of data whose label (output) is

known, and it is applied to make predictions of the labels

for a new set of data whose label is unknown, assuming that

there exists a consistent mapping function between the

input and output data. In this study, we use regression

algorithms, a class of ML approaches, to make quantitative

predictions of lattice-QCD measurements. Specifically, the

supervised ML regression algorithms we use are the simple

linear regression and the gradient boosting tree (GBT)

algorithms [31] implemented in the PYTHON scikit-learn

package [32]. Although all the data we use in this test have

labels, we divide them into the labeled and unlabeled sets,

by hiding the label for the unlabeled dataset. Then, the

labeled dataset is used for training and bias-correction

procedure, while the unlabeled dataset is used for the test of

the trained regression algorithm.

Gradient boosting is one of the techniques creating a

strong model from an ensemble of weak prediction models

1
Another paper [26] applied the neural network (NN) algo-

rithm to the inversion problem to reconstruct PDF from pseudo-
PDF matrix elements, though the model was trained and tested on
mock datasets instead of real lattice data.
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[33,34]. For GBT, the shallow decision trees are used as the

weak learners (nested mappings as elements of a more

complicated function approximation) in series and building

the active model:

fkðxÞ ¼
X

k

i¼1

rihiðxÞ; fðxÞ ¼ fNest
ðxÞ ð2Þ

where Nest is the number of estimators, ri is the learning

rate, and hiðxÞ is the function used in the base decision tree
to minimize the loss function L:

hiðxÞ ¼ argmin
h

X

j

Lðyj; fi−1ðxjÞ þ hðxjÞÞ ð3Þ

where the subscript j iterates over the training-data sam-

ples. In this work, the loss function is chosen to be the mean

squared error, and the depth of the decision tree is fixed

at 3. To optimize the ML predictions, we must choose

model parameters in Eq. (2) within the proper range. Two

parameters are tuned explicitly in this process: the learning

rate r, and the number of estimators Nest.

The prediction accuracy of GBT is compared with those

of the linear regression model

flinðx⃗Þ ¼ θ0 þ θ⃗ · x⃗ ð4Þ

for the same set of data. Quantitatively, the quality of the

prediction accuracy of the regression models is represented

by the fit variance Fv defined as

Fv ¼ 1 − ðhðCul − CpredÞ2i − hCul − Cpredi2Þ=σ2; ð5Þ

where Cul and Cpred are the observed and predicted mea-

surements on unlabeled dataset, respectively, and σ2 is the

variance of the observed measurements. The higher value of

Fv indicates the better fit quality, and the maximum value

of Fv is 1, which shows a perfect prediction, Cpred ¼ Cul. In

practical calculations, the Fv can be calculated on the bias-

correction dataset of the labeled dataset, which is described

below. However, we use the unlabeled dataset for the

calculation of the Fv, because Cul are available in this test

study.

Prediction from a ML algorithm may have bias due to

prediction error. We follow the bias-correction strategy

introduced in Ref. [25] to remove the bias in our estimate

and define the bias-corrected prediction as

hCpred;BCi ¼ hCprediul þ hCBC − CprediBC; ð6Þ

where the brackets with subscripts “ul” and “BC” denote

averages over the unlabeled and bias-correction datasets,

respectively. After bias correction, the expectation value of

the prediction becomes the same as the expectation value

of the ground truth, and its statistical error includes the

systematic error due to inaccurate predictions. After the

bias correction, therefore, our main concern is reducing

the statistical error of the final estimate.

We normalize the labeled data so that the standard

deviation of each input measurement becomes 1 before we

pass it to theMLalgorithms. Each subset of the data (training,

bias-correction, andunlabeled datasets) described inRef. [25]

are chosen such that the configurations are evenly distributed.

The convention of notations throughout this work is given in

Table I.

The errors of the predictions are estimated using the

bootstrap method. We randomly pick the bootstrap samples

for labeled and unlabeled datasets, and partition the labeled

one into training and BC datasets. We train the model and

estimate the bias correction on each bootstrap sample of

labeled data. We make prediction on the corresponding

sample of unlabeled data and calculate the average of the

results for unlabeled data. The error is then estimated over

all bootstrap samples.

III. APPLICATION TO LATTICE QUASI-PDF

MATRIX ELEMENTS

A. Predictions of meson quasi-DA measurements

Meson DAs ϕM are important universal quantities appear-

ing in many factorization theorems, which allow for the

description of exclusive processes at large-momentum trans-

fers Q2
≫ Λ

2
QCD [35,36]. Such quantities can be calculated

using LaMET [4,8] by calculating the time-independent

spatial correlators (the quasi-DA) on the lattice, followed by

a matching procedure with corrections suppressed by the

hadron momentum. The light-cone meson DA

ϕMðx; μÞ ¼
i

fM

Z

dξ

2π
eiðx−1Þξn·P

× hMðPÞjψ̄1ð0Þn · γγ5Uð0; ξnÞψ2ðξnÞj0i ð7Þ

can be extracted from the quasi-DA

ϕ̃Mðx; μR; PzÞ ¼
i

fM

Z

dz

2π
eiðx−1ÞzPz

× hMðPÞjψ̄1ð0Þγzγ5
Y

z−1

x¼0

Uzðx; tÞψ2ðzÞj0i

ð8Þ

TABLE I. The convention for the subscripts we use in this work.

Subscript Convention

in input to the model

pred prediction of the model

pred, BC bias-corrected prediction

tr labeled training data

BC labeled bias-correction data

lb all labeled data

ul unlabeled data

MACHINE-LEARNING PREDICTION FOR QUASIPARTON … PHYS. REV. D 101, 034516 (2020)

034516-3



through the matching [37]

ϕ̃Mðx; μR; PzÞ ¼
Z

dyZϕðx; y; μ; μR; PzÞϕMðy; μÞ

þO

�

ΛQCD

P2
z

;
m2

M

P2
z

�

ð9Þ

according to LaMET. The quasi-DA can be obtained by

computing the following correlators for K− and ηs, as

presented in the Refs. [16,17]:

C2ptðz; P; tÞ ¼ h0j
Z

d3yeiP⃗·y⃗ψ̄1ðy⃗; tÞγzγ5
Y

z−1

x¼0

Uzðyþ xẑ; tÞ

× ψ2ðy⃗þ zẑ; tÞψ̄2ð0; 0Þγ5ψ1ð0; 0Þj0i ð10Þ

wherefψ1;ψ2g arefu;sg forK− andfs;sg for ηs,Uðx⃗; x⃗þzÞ
is the Wilson line connecting lattice site x⃗ to x⃗þ zẑ.
We perform a calculation using gauge ensembles with

clover valence fermions on a 483×144 lattice with 2þ1þ1

flavors (degenerate up and down, strange, and charm

degrees of freedom) of highly improved staggered quarks

(HISQ) [38] generated by the MILC Collaboration [39].

The lattice spacing a ≈ 0.06 fm, and msea
π ¼ 310 MeV.

Hypercubic (HYP) smearing [40] is applied to the configu-

rations. The bare quark masses and clover parameters are

tuned to recover the lowest pionmass of the staggered quarks

in the sea. Correlators are calculated from momentum-

smearing sources [41] using 20 source locations on each of

the 95 configurations (1900 measurements in total).

We make two predictions using the ML algorithm. One

is to predict the correlators at larger link length zpred from

the correlators at zin < zpred. The other is to predict the

correlators of larger momentum ppred from the correlators

of pin < ppred.

To determine what input data to use for these predictions,

we first check the correlations among datasets with differ-

ent momenta, link lengths and time slices. The results are

shown in Fig. 1. Here, we set the target data to be the

2-point quasi-DA correlators at ppred ¼ 5, zpred ¼ 4 with

input data pin ¼ 4, zin ¼ 4 for p prediction and pin ¼ 5,

zin < 4 for z prediction. We select the time slice tpred ¼ 7 to

check the correlations.

Despite the larger error, larger time slices have a weaker

correlation with the target data. This suggests that we

should use input data close to the time slice of the target

data. On the other hand, we should be able to extend the

range of momentum or links of the input.

In the training process, we tried different parameters for

learning rate in f0.5; 0.2; 0.1; 0.02; 0.01; 0.005; 0.002g and

the number of estimators in f100; 150; 200; 250; 300g. The
corresponding fit variance are plotted in a heat map with

range [0,1], as shown in Fig. 2. Considering the fit quality

for both p predictions and z predictions, we selected

parameters r ¼ 0.1,Nest ¼ 150 as having highest fit quality

in both cases; these will be used for further meson-DA

predictions.

The datasets were evenly distributed into three parts:

training data, bias-correction data, and unlabeled test data.

In practice, we want to minimize the labeled data size

without sacrificing much prediction quality. We varied the

amount of training data and bias-correction data from 300

to 500, while keeping the number of unlabeled test data

Nul ¼ 900 fixed, to look for a best trade-off between

reduced data size and prediction quality. The results are

shown in Fig. 3. When correlation is obvious, small number

of training and bias-correction datasets provides precise

estimate that is very close to the true observations for the

unlabeled dataset. When correlation is vague, the prediction

becomes more precise as one increases the size of the

training or the bias-correction datasets. Based on the plot,

we picked Ntr ¼ 400, NBC ¼ 500 for further estimations.

FIG. 1. Correlations between target ηs DA C2pt data at zpred ¼ 4, ppred ¼ 5, tpred ¼ 7 with input data at a different link length

(momentum) and time slice for z prediction (left) and p prediction (right). The correlation decays quickly, especially at larger t.
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To further check the consistency of our predictions with

the observations, we calculate the effective mass from C2pt

and compare the results. The effective mass is defined as

EðtÞ ¼ ln
C2ptðtÞ

C2ptðtþ 1Þ : ð11Þ

Then, we compared different input data to be used for z
prediction in Table II. The bias correction makes the

prediction noisier by converting the systematic error into

statistical error, which improves the accuracy of the

prediction for most cases.

For small datasets, such as what we have for the quasi-

DA data, it can be difficult for the GBT model to extract the

FIG. 3. The observed and z-predicted ηs DA effective mass of ppred ¼ 5, zpred ¼ 4 at tpred ¼ 4 with input ppred ¼ 5, zpred ∈ ½0; 3�,
tin ∈ ½3; 5� for different choices of training-data counts and bias-correction data counts. The left (right) plot is the prediction of GBT

(linear) model. The horizontal axis is Ntr þ 0.1NBC, with Nul ¼ 900 fixed. The GBT parameters are Nest ¼ 150, r ¼ 0.1. The blue

points are predictions with bias correction for the unlabeled test data, and the brown points are observations for unlabeled test data.

TABLE II. Effective mass calculated from the prediction of ηs DA C2pt at ppred ¼ 5, zpred ¼ 4, tpred ¼ 7 with different models and

different inputs. Models are trained with Ntr ¼ 400, NBC ¼ 500, Nul ¼ 900, Nest ¼ 150, r ¼ 0.1. The linear model is more accurate

than GBT. Both models have better performance for z prediction than p prediction.

Type Input Method Etr Epred Epred;BC Eul Fv

p-pred pin ∈ ½3; 4�, zin ¼ 4, tin ¼ 7 GBT 0.679(11) 0.684(13) 0.683(14) 0.6923(80) 0.50(13)

linear 0.679(11) 0.6960(86) 0.6961(91) 0.6920(74) 0.911(43)

z-pred pin ¼ 5, zin ∈ ½0; 3�, tin ¼ 7 GBT 0.679(11) 0.694(13) 0.692(12) 0.6923(80) 0.62(14)

linear 0.679(11) 0.6913(76) 0.6912(75) 0.6920(74) 0.99935(40)

FIG. 2. Fit variance Fv of the unlabeled ηs DA data for the ppred ¼ 5, zpred ¼ 4 prediction at tpred ¼ 4 from zin ¼ 3 (left) or pin ∈ ½3; 4�
(right). Ntr ¼ 400, Nul ¼ 1000. It is clear that more estimators are needed for smaller learning rate. Increasing Nest without worsening

the prediction indicates that the model is robust to overfitting.
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nonlinear pattern of the training dataset. As a consequence,

the fit quality of the GBT model for the test data is poor.

Instead, the simpler linear regression shows better perfor-

mance. Sometimes, however, with input data when the

dataset is noisy (e.g., larger-t data), the linear regression

fails with poor prediction quality, as shown in Table III,

while GBT was able to capture the correlation and make

predictions. Using cleaner and more correlated data like the

closest time slice, momentum and link can significantly

improve the fit quality for linear regression.

After determining the parameters, we run the ML

program and show the effective mass of our predictions

along with the observed datasets for both ppred and zpred
predictions in Fig. 4. The linear model works well for z
prediction, but the GBT model and p predictions still need

to be improved.

TABLE III. Effective mass calculated from the prediction of ηs DA C2pt at ppred ¼ 5, zpred ¼ 4, tpred ¼ 10 with different models and

different input time slices. Models are trained with Ntr ¼ 400, NBC ¼ 500, Nul ¼ 900, Nest ¼ 150, r ¼ 0.1. The linear model has better

performance on correlated cleaner data but fails when more uncorrelated noisy data input are included. The GBT is more stable and less

sensitive to these inputs.

Type Input Method Etr Epred Epred;BC Eul Fv

p-pred pin ∈ ½3; 4�, zin ¼ 4, tin ¼ 10 GBT 0.686(43) 0.678(45) 0.683(40) 0.675(26) 0.36(19)

linear 0.683(37) 0.692(39) 0.695(39) 0.676(27) 0.72(13)

p-pred pin ∈ ½3; 4�, zin ¼ 4, tin ∈ ½7; 13� GBT 0.686(43) 0.677(51) 0.676(43) 0.675(26) 0.25(27)

linear 0.683(37) 0.675(88) 0.677(77) 0.676(27) −0.13ð85Þ

FIG. 4. The observed/predicted ηs DA effective mass at ppred ¼ 5, zpred ¼ 4 from pin ¼ 5, zin ∈ ½0; 3� (left) and pin ∈ ½3; 4�, zin ¼ 4

(right). The top (bottom) plots are obtained by using GBT (linear) model with Ntr ¼ 400, NBC ¼ 500, Nul ¼ 900. The GBT parameters

are Nest ¼ 150, r ¼ 0.1. The linear model shows better consistency with the unlabeled data, while at some time slices the GBT model

fails to give a good prediction.
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B. Predictions of kaon quasi-PDFs

As Nambu-Goldstone bosons associated with dynamical

chiral SU(3) symmetry breaking, the pion and kaon serve

as a fundamental test ground for our understanding of QCD

theory at the hadronic scale. The ab initio calculation of

hadron PDFs from lattice QCD provides theoretical back-

ground for particle-discovery experiments and Standard-

Model (SM) tests at colliders [42]. After decades of

theoretical and experimental efforts, the precision required

in PDFs for more stringent tests of the SM has increased

significantly. In Ref. [43], we presented the first direct

lattice calculation of the valence-quark distribution in

the pion, using the MILC HISQ coarse ensemble with

Mπ ≈ 330 MeV. Since the computational cost of quasi-

PDF measurements on an ensemble at lighter pion mass or

reduced lattice spacing would increase significantly, in this

work we investigate a ML algorithm to reduce the computa-

tional cost.

We test on the meson unpolarized quasi-PDF measure-

ments on the lattice:

C3ptðz; tÞ ¼ h0j
Z

d3ye−iy·PMpsðy⃗; tsepÞs̄ðz; tÞγ4

×
Y

z−1

x¼0

Uzðx; tÞsð0; tÞM̄psð0⃗; 0Þj0i; ð12Þ

C2ptðtsepÞ¼h0j
Z

d3ye−iy·PMpsðy⃗;tsepÞM̄psð0⃗;0Þj0i; ð13Þ

where C3pt is the three-point correlator, C2pt is the two-

point correlator, Mps ¼ q̄γ5q is the pseudoscalar meson

operator, z is the length of the Wilson link, Uμðx; tÞ is the
gauge link, and γi are Dirac spinor matrices. For this study

we use Wilson clover valence quarks on a MILC HISQ

ensemble. The lattice spacing is a ≈ 0.12 fm, the lattice

volume V¼403×64, and the pion mass Msea
π ≈ 220 MeV.

The valence-quark masses are tuned to match the valence

pion to the sea pion mass. We adopt Gaussian momentum

smearing [41] to generate quark sources, to enhance the

ground-state signal at nonzero momentum near 1.55 GeV.

The Gaussian smearing width is chosen to be 3, with

50 iterations, and the momentum parameter k ¼ 4.82.

Measurements are done on 495 configurations, using 4

quark-source locations per configuration, making 1960

measurements in total. Measurements are averaged over

these quark sources before being passed to the ML

algorithm, as this has shown to provide predictions with

smaller statistical errors. The ratio of the three-point

correlator (C3pt) to the two-point correlator (C2pt) is a

useful way to extract the matrix elements:

RðtÞ ¼ C3ptðtÞ=C2ptðtsepÞ ð14Þ

where RðtÞ is the ratio at the operator insertion time t, and
tsep is the meson source and sink temporal separation.

1. Kaon quasi-PDF results

For the kaon quasi-PDF, the meson operator is

K ¼ ūγ5s. We first check the correlation for three-point

correlators with insertion operator γ4. Generally, the corre-

lations are better than for the DA case. The correlations

between different time are shown in Fig. 5. The correlation

is insensitive to insertion time, but sensitive to the differ-

ence between two-point time slice and three-point source-

sink time separation. Because the correlators are similar

for different insertion times, we can use all the insertion

time slices as input in the same procedure. An anomaly is

observed in the momentum correlation in Fig. 6, which may

be due to the different number of measurements for

p ∈ f3; 4g and p ∈ f5; 6g, since we had an extra run

for p ∈ f5; 6g with different source locations. The link

FIG. 5. Correlations between C2pt and C3pt of kaon quasi-PDF at different time separations (left, with insertion time t3pt ¼ tsep=2) and
at different insertion times (right, with tsep ¼ 6). The correlation is insensitive to the insertion time.
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correlation is then displayed in Fig. 7. The correlation

decays slowly in the z direction, suggesting that we may

use more data at different links as inputs.

Again, we compare the parameters used for the GBT

model. Figure 8 shows the fit-variance estimate Fv from

both the z prediction (with pin ¼ ppred and zin < zpred), and

the p prediction (with pin < ppred and zin ¼ zpred) using the

GBT model trained on 400 measurements. The horizontal

axis shows the number of estimators Nest, and the vertical

axis shows the learning rate r. The target measurement is at

ppred ¼ 4, zpred ¼ 4, tsep ¼ 5, and t ¼ 2. For each predic-

tion we used both C3pt and the C2pt. Thus, in either case a

set of fit parameters can be chosen as, e.g., Nest ¼ 150,

r ¼ 0.1. As expected, with reduced learning rate, one needs

more estimators to achieve a similar fit variance. With fixed

learning rate, the fit variance becomes stable when we keep

increasing Nest, indicating that the model is robust to

overfitting.

Figure 9 compares the final predictions among various

training and bias-correction measurements:Ntr andNBC are

selected from f80; 160; 240; 320; 400g, and the number of

unlabeled measurements is fixed to Nul ¼ 1180. The fit

parameters are adopted as above. We observe a reduced

error size of final predictions with increased Ntr and NBC.

Using p prediction on kaon quasi-PDFs can reduce the

computational cost, because calculating C3pt at different

momenta requires the calculation of different propagators

from different sequential sources. The effective computa-

tional savings of the ML calculation can be derived by

considering the number of propagators needed to achieve

the same precision as in a calculation without ML. In our

case, to use pin ¼ 3 to predict ppred ¼ 4, we need to

calculate Nin propagators at pin ¼ 3 and NBC þ Ntr propa-

gators at ppred ¼ 4 for the ML setup. Then, we can use the

model to obtain the Nul predictions at ppred ¼ 4. This

amount of data is equivalent to a non-ML calculation with

Nin propagators at pin ¼ 3 and Nul × σ2ðRulÞ=σ2ðRcombÞ
propagators at ppred ¼ 4. The cost with ML can be

quantified by

Cost ¼ Nin þ NBC þ Ntr

Nin þ Nulh σ2ðRulÞ
σ2ðRcombÞ

i
t

ð15Þ

where NBC, Ntr and Nul are the numbers of propagator

calculations (which represent the computational cost) needed

to obtain the corresponding datasets (bias-correction, train-

ing and unlabeled), andNin is that of the input data. The ratio

σ2ðRulÞ=σ2ðRcombÞ is the scaling factor of the effective

number of measurements we can obtain by employing the

FIG. 6. Correlations between the kaon quasi-PDF three-point correlators and two-point correlators (left) or three-point correlators

(right) at different momenta. The three-point correlation seem to be clustered; p ∈ f3; 4g and p ∈ f5; 6g are correlated separately. Thus,
the prediction of ppred ¼ 5 from smaller momentum has bad quality.

FIG. 7. Correlations between the kaon quasi-PDF three-point

correlators with pin ¼ ppred ¼ 3 at different link lengths. Shorter

link lengths have better correlation, and the correlation decay in

the z direction is slow.
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ML prediction, accounting for the increase of statistical

error due to prediction error. We assume that the errors of

observables scale as 1=
ffiffiffiffi

N
p

as the number of measurements

increases. For the cost estimate, we use an average value of

the ratios over different insertion time slices. We calculate

the Rcomb ¼ Ccomb
3pt =C2pt here from each bootstrap sample by

taking the weighted average of the measurements on labeled

data and BC predictions on unlabeled data in each sample:

Ccomb
3pt ¼

C̄
pred;BC
3pt =σ2ðCpred;BC

3pt Þ þ C̄lb
3pt=σ

2ðClb
3ptÞ

1=σ2ðCpred;BC
3pt Þ þ 1=σ2ðClb

3ptÞ
ð16Þ

while the error σðRcombÞ is estimated from all bootstrap

results. A smaller cost indicates higher prediction efficiency,

so we varyNtr andNBC to find the optimal cost reduction, as

shown in Fig. 10. By choosing optimal Ntr and NBC, we can

obtain about 20% reduction in computational cost.

Figure 11 shows this set of fitted results from both the z
prediction and p prediction at Ntr ¼ 240, NBC ¼ 240,

while Table IV compares several sets of p and z predictions
and observations. The last column of the table shows the fit

quality.

We compare the predicted ratios for these models in

Fig. 11. The z predictions are consistent with unlabeled

data for both models, but the p predictions still need to be

improved.

2. ηs quasi-PDF results

For the ηs quasi-PDF data, the meson operator is ηs ¼
s̄γ5s. The ηs data have better signals, and the correlations

among ηs data show the same patterns as those of the kaon.

Therefore, we select the same parameters for the model

FIG. 8. Estimates of the fit variance Fvðt ¼ 2Þ as a function of learning rate r and number of estimators Nest from the kaon quasi-PDF

measurements at ppred ¼ 4, zpred ¼ 4, tsep ¼ 5. Ntr ¼ 400 and Nul ¼ 1180 are used. The left (right) plot shows the results from the z
prediction (p prediction). The z prediction has a much better fit variance because of the good correlations between close links.

FIG. 9. Observations and predictions of the ratio Rðt ¼ 2Þ of kaon quasi-PDF correlators at ppred ¼ 4, zpred ¼ 4, tsep ¼ 5 from input

data at pin ¼ 4, zin ∈ ½0; 3�, tsep ¼ 5. The left and right sides show the results from using the GBT and linear models, respectively. We

use Nest ¼ 150, r ¼ 0.1 for the GBT model. The horizontal axis shows Ntr þ 0.1NBC, and the number of unlabeled measurements is

fixed to 1180. Points in blue are for predictions with bias correction, and orange for observations.
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FIG. 11. The ratio RðtÞ of the kaon quasi-PDF correlators at zpred ¼ 4, ppred ¼ 4 from direct measurements and the predictions of the

three models. The top (bottom) row is GBT (linear) model with Nest ¼ 150, r ¼ 0.1. Ntr ¼ NBC ¼ 240 and Nul ¼ 1180 are used. The

left column uses zin ∈ ½0; 3�, pin ¼ 4 as inputs, while the right column uses zin ¼ 4, pin ¼ 3 as inputs. z predictions are better than p
predictions.

FIG. 10. Observations and predictions of the ratio Rðt ¼ 2Þ of kaon quasi-PDF correlators at ppred ¼ 4, zpred ¼ 4, tsep ¼ 5 from input

data at pin ¼ 3, zin ¼ 4, tsep ¼ 5. The red line shows the effective cost averaged on Rðt ∈ ½1; 4�Þ. The left and right sides show the results

from using the GBT and linear models, respectively. We use Nest ¼ 150, r ¼ 0.1 for the GBT model. The horizontal axis shows

Ntr þ 0.1NBC, and the number of unlabeled measurements is fixed to 1180. Points in blue are for predictions with bias correction, and

orange for observations.
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training, Nest¼150, r¼0.1, Ntr¼NBC¼240, Nul ¼ 1180.

By comparing Fig. 12 and Fig. 8, we can see that the fit

quality is slightly improved by the cleaner dataset. We infer

that with more labeled kaon quasi-PDF data available for

model training, the kaon model will show better perfor-

mance as well. The predictions compared with observations

are shown in Fig. 14. Both z predictions and p predictions

are more precise compared to the kaon case. Figure 13 shows

the cost on different Ntr=NBC set, the linear model shows a

better optimal reduction than the kaon case. Overall, the cost

reductions are 12%–18% at optimal choices of the sizes of

the training and bias-correction datasets.

FIG. 12. Estimates of the fit variance Fv as a function of learning rate r and number of estimators Nest from the ηs quasi-PDF

measurements at ppred ¼ 4, zpred ¼ 4, tsep ¼ 5, and tpred ¼ 2. Ntr ¼ 400 and Nul ¼ 1180 are used. The left (right) side shows the results

from the z prediction (p prediction). The performance is better than the model of kaon data.

FIG. 13. Observations and predictions of the ratio Rðt ¼ 2Þ of ηs quasi-PDF correlators at ppred ¼ 4, zpred ¼ 4, tsep ¼ 5 from input

data at pin ¼ 3, zin ¼ 4, tsep ¼ 5. Red line is the effective cost averaged on Rðt ∈ ½1; 4�Þ. The left and right sides show the results from

using the GBT and linear models, respectively. We use Nest ¼ 150, r ¼ 0.1 for the GBT model. The horizontal axis shows

Ntr þ 0.1NBC, and the number of unlabeled measurements is fixed to 1180. Points in blue are for predictions with bias correction, and

orange for observations.

TABLE IV. Observations and predictions of the ratio Rðt ¼ 2Þ of the kaon quasi-PDF correlators at ppred ¼ 4, zpred ¼ 4, tsep ¼ 5 from

different models and inputs. We use Nest ¼ 150, r ¼ 0.1 for the GBT model. The models are trained on 240 measurements with 240

bias-correction measurements, and then tested on 1180 unlabeled measurements. The linear model shows a better fit variance than GBT.

Type Input Method Rtr Rpred Rpred;BC Rcomb Rul Fv

p-pred pin ¼ 3, zin ¼ 4 GBT 0.2441(70) 0.2430(60) 0.2439(56) 0.2435(51) 0.2471(35) 0.692(41)

linear 0.2441(70) 0.2479(63) 0.2480(58) 0.2472(54) 0.2471(35) 0.772(29)

z-pred pin ¼ 4; zin ∈ ½0; 3� GBT 0.2441(70) 0.2458(40) 0.2455(41) 0.2456(32) 0.2471(35) 0.890(26)

linear 0.2441(70) 0.2470(36) 0.2473(36) 0.2466(32) 0.2471(35) 0.998(1)

MACHINE-LEARNING PREDICTION FOR QUASIPARTON … PHYS. REV. D 101, 034516 (2020)

034516-11



C. Gluon quasi-PDF matrix elements

The gluon PDF contributes at next-to-leading order to

deep inelastic scattering (DIS) cross sections, and it enters

at leading order in jet production. Global fits have com-

bined the data from both DIS and jet-production cross

sections, and constraints on the gluon PDF from the

experimental side are improving. However, on the theo-

retical side the gluon PDF is poorly known. PDF cannot be

calculated using perturbative QCD. Recently, it has been

found that they can be calculated directly in lattice QCD

using large-momentum effective field theory. The gluon

unpolarized quasi-PDF matrix elements are computed on

the lattice using

C3ptðz; tsep; tÞ ¼ h0jΓ
Z

d3ye−iy·Pχðy⃗; tsepÞFμtðz; tÞ

×

�

Y

z−1

x¼0

Uðx; tÞ
�

Fzμð0; tÞχð0⃗; 0Þj0i; ð17Þ

FIG. 14. The ratio RðtÞ of ηs quasi-PDF correlators at zpred ¼ 4, ppred ¼ 4 from direct measurements and the predictions of the two

models. The top (bottom) row is the GBT (linear) model. The left column uses zin ∈ ½0; 3�, pin ¼ 4, the right column uses zin ¼ 4,

pin ¼ 3. The model performs better on these cleaner datasets. Ntr ¼ NBC ¼ 240, Nul ¼ 1180 and Nest ¼ 150, r ¼ 0.1 are used in the

model training.

FIG. 15. Correlation coefficient between the three-point corre-

lation function at ppred ¼ 2, zpred ¼ 3 and at various choices of p
and z calculated using the overlap valence fermions. Different z at
the same p cases show higher correlation than different p at the

same z cases.
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FIG. 16. Gluon-correlator ratio fit variance for the z prediction (left) and p prediction (right) for the overlap valence fermions at

ppred ¼ 5, zpred ¼ 3, tsep ¼ 8 at t ¼ 4 from pin ¼ 5, zin ¼ 2, tsep ¼ 8 and pin ¼ 4, zin ¼ 3, tsep ¼ 8 using Ntr ¼ 61440, NBC ¼ 61440,

and Nul ¼ 81920. Fit variance is closely related to the correlations between the input data and unlabeled data. z prediction works much

better than p prediction.

FIG. 17. The GBT (left) and linear-regressor (right) results. The observed p- and z-predicted gluon-correlator ratios are for the overlap
valence fermions at ppred ¼ 2, zpred ¼ 3 at tsep ¼ 8 by using r ¼ 0.02 and Nest ¼ 150 for different counts of training data and bias-

correction data. The horizontal axis is Ntr þ 0.1NBC, with Nul ¼ 143360 fixed. The blue points are predictions with bias correction for

the unlabeled test data, and the orange points are observations for unlabeled test data.
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C2ptðz; tsepÞ ¼ h0jΓ
Z

d3ye−iy·Pχðy⃗; tsepÞχð0⃗; 0Þj0i; ð18Þ

where C3pt is the three-point correlator, C2pt is the two-

point correlator, Oðz; tÞ is the gluon operator, χ ¼
ϵabc½uaTðxÞiγ4γ2γ5dbðxÞ�ucðxÞ is the nucleon interpolation

field, fa; b; cg are color indices, Γ ¼ 1
2
ð1þ γ4Þ, and the

field tensor Fμν is defined by

Fμν ¼
i

8a2g
ðP½μ;ν� þ P½ν;−μ� þ P½−μ;−ν� þ P½−ν;μ�Þ; ð19Þ

where the plaquettePμ;ν¼UμðxÞUνðxþaμ̂ÞU†
μðxþaν̂ÞU†

νðxÞ
andP½μ;ν� ¼ Pμ;ν − Pν;μ. To improve the signal,we studied 1,

3, 5, 10 steps of HYP smearing [40] on the gluonmomentum

faction hxig in Eq. (3) of Ref. [44]. After applying the

renormalization to the bare matrix elements, the results from

different numbers of HYP-smearing steps are consistent

with each other and with phenomenology results 0.42(2)

within the uncertainties [44]with the exception of the 10-step.

Therefore, we apply 5 steps of HYP smearing to the gluon

quasi-PDF operators in this work. The ratio R of the three-

point correlator to the two-point correlator follows the same

definition as in Eq. (14).

We use valence overlap fermions on RBC gauge con-

figurations [45] with 2þ 1 flavors of domain-wall fermions

(DWF), lattice volume L3 × T ¼ 243 × 64, lattice spacing

a ¼ 0.1105ð3Þ fm, and pion mass msea
π ¼ 330 MeV. We

also compute clover valence quarks on the MILC Nf¼
2þ1þ1 HISQ configurations [46] with L3×T¼323×96,

a ¼ 0.0888ð8Þ fm, and msea
π ¼ 313 MeV. For the nucleon

two-point function, considering all time slices and inde-

pendent smeared point sources, the number of measure-

ments for the two-point functions is 200 × 128 × 8 ¼ 204,

800 on the RBC-24I lattices and 300 × 16 × 6 ¼ 28, 800

on the MILC-a09m310 lattices.

1. Predictions of the gluon correlators with

the overlap valence fermions

To make z=p predictions on correlators based on

smaller z=p values, we should first check the correlations

among correlators with different momenta and link lengths.

FIG. 18. The observed/predicted gluon-correlator C3pt and C2pt ratio of the overlap valence fermions lattice ensemble at ppred ¼ 2,

zpred ¼ 3 from pin ¼ 1, zin ¼ 3 (upper) and ppred ¼ 2, zpred ¼ 3 from pin ¼ 2, zin ¼ 2 (lower) by using Ntr ¼ 30720, NBC ¼ 30720,

Nul ¼ 1433600, r ¼ 0.02, and Nest ¼ 150. The GBT and linear-regressor results are shown on the left and right, respectively. The

predictions with bias correction do not improve much over the raw predictions.
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In Fig. 15, we show the correlations between the three-

point correlation function at ppred ¼ 2, zpred ¼ 3 and the

same three-point correlation functions at various choices of

momenta pin ¼ f0; 1; 3g and link lengths zin ¼ f1; 2; 3; 4g.
The source-sink time separation is fixed to tsep ¼ 8. We

notice that the correlations between different momenta

are weaker than the correlations between different link

lengths in this case, which will result in a relatively low

p-prediction fit variance as shown in Fig. 16.

The fit variances Fv from the p prediction and z
prediction are shown in Fig. 16 with different learning rates

in f0.002; 0.005; 0.01; 0.02; 0.05; 0.1; 0.2; 0.5g and differ-

ent numbers of estimators in f100; 150; 200; 250; 300g.
The target measurement is with pin ¼ ½0; 1�, ppred ¼ 2,

zin ¼ zpred ¼ 3, tsep ¼ 8, and t ¼ 4. We used both C3pt

and C2pt for prediction. Thus, considering the Fv for

z=p prediction shown in Fig. 16, we choose r ¼ 0.02,

Nest ¼ 150 as the parameter set we will use in further work.

For p prediction, we varied the number of training data

and bias-correction data from 15360 to 30720, while

keeping the number of unlabeled test data Nul ¼ 143360

fixed, to compare their performance. The results are shown

in Fig. 17. We will use Ntr ¼ 30720, NBC ¼ 30720 in the

following p=z prediction.

With the ML model parameters and the dataset we

obtained from the overlap-fermion ensembles, we show the

result of our prediction along with the observed datasets for

both ppred and zpred predictions in Fig. 18. In the prediction,

we can use any pin < ppred or zin < zpred for prediction.

In Table V, two-point and three-point correlator data at

pin ¼ 1, zin ¼ 3, tsep ¼ 8 or pin ¼ 2, zin ¼ 2, tsep ¼ 8 are

used for predicting the ppred ¼ 2, zpred ¼ 3, tsep ¼ 8 ratio.

The data for insertion time t ¼ 4 are shown. From the table

we can see that the p predictions are bad for both models,

because the correlations are weak, as shown in Fig. 18. The

z predictions are better than p predictions, and the linear

model performs better than GBT.

2. Predictions of the gluon correlators

for clover valence fermions

We repeat the procedure we established from the overlap

valence fermions for the clover fermions, checking the

correlations among correlators with different momenta and

link lengths. In Fig. 19, we show the correlations between

the three-point correlation functions at ppred ¼ 5, zpred ¼ 3

at various values of pin ¼ f0; 2; 4g, zin ¼ f0; 1; 2; 3g. The
source-sink time separation is fixed tsep ¼ 8. The correla-

tions between different momenta are much stronger than in

the overlap case, which leads to a much higher p-prediction
fit variance, as shown in Fig. 20. The reason that the

correlations of clover fermion case are stronger than

overlap-fermion case is the construction of the sources

of proton correlator are different in two cases. In overlap

fermion, we use grid spatial source which needs gauge

averaging to get consistent correlators that are due to weak

correlation properties. While the clover fermion does not

have this kind of problem because of using one spatial

location per time source.

We use the same fit-variance Fv estimation as in the

overlap case. The target measurement is pin ¼ 4, ppred ¼ 5,

zin ¼ 2, zpred ¼ 3, tsep ¼ 8, and t ¼ 4. We obtain r ¼ 0.2,

Nest ¼ 200 as the parameters we will use in the following

process from Fig. 20. These two figures indicate stronger

correlations between input and target data are needed to

obtain good results for the fit variance.

FIG. 19. Correlation coefficients between the three-point cor-

relation functions at ppred ¼ 5, zpred ¼ 3 at various values of

pin ¼ f0; 2; 4g, zin ¼ f0; 1; 2; 3g calculated using the clover

valence fermions. Different z at the same p cases show higher

correlation than different p at the same z cases.

TABLE V. Observations and predictions of gluon-correlator ratios for the overlap valence fermions observations and predictions at

ppred ¼ 2, zpred ¼ 3, tsep ¼ 8, t ¼ 4 by using Ntr ¼ 30720, NBC ¼ 30720, Nul ¼ 1433600, r ¼ 0.02, and Nest ¼ 150. For the z
predictions, the linear model shows a better fit variance than GBT. The p predictions are bad for both models, because the correlations

are poor, as shown in Fig. 18.

Type Input Method Rtr Rpred Rpred;BC Rul Fv

p-pred pin ¼ 1, zin ¼ 3 GBT 0.184(34) 0.178(33) 0.177(29) 0.171(14) 0.07(18)

linear 0.184(34) 0.179(35) 0.177(35) 0.171(14) −0.05ð38Þ
z-pred pin ¼ 2, zin ¼ 2 GBT 0.184(34) 0.185(28) 0.189(22) 0.171(14) 0.53(12)

linear 0.184(34) 0.177(21) 0.176(22) 0.171(14) 0.665(79)
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FIG. 21. The observed/predicted gluon-correlator C3pt and C2pt ratio of the clover valence fermions ppred ¼ 5, zpred ¼ 3 at tsep ¼ 8 by

using r ¼ 0.2 and Nest ¼ 200 for different counts of training data and bias-correction data. The horizontal axis is Ntr þ 0.1NBC, with

Nul ¼ 23040 fixed. The GBT and linear-regressor results are shown on the left and right, respectively. The blue points are predictions

with bias correction for the unlabeled test data, and the orange points are observations for unlabeled test data.

FIG. 20. Gluon-correlator ratio fit variance for the z prediction (left) and p prediction (right) for the clover valence fermions at

ppred ¼ 5, zpred ¼ 3, tsep ¼ 8 at t ¼ 4 from pin ¼ 5, zin ¼ 2, tsep ¼ 8 and pin ¼ 4, zin ¼ 3, tsep ¼ 8 using Ntr ¼ 2880, NBC ¼ 2880, and

Nul ¼ 23040. With a stronger correlation between input and target data, smaller learning rate and number of estimators are needed to

have good fit-variance score.
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Again, to compare their performance we varied the

number of training data and bias-correction data from

1440 to 2880, while keeping the number of unlabeled test

data Nul ¼ 23040 fixed. The observed, p- and z-predicted
gluon correlator C3pt and C2pt ratio of the clover valence

fermionsppred ¼ 5; zpred ¼ 3 at tsep ¼ 8 are shown in Fig. 21.

Comparing with these results, we will use Ntr ¼ 2880,

NBC ¼ 2880 in the following p and z predictions.

The observed/predicted gluon-correlator ratios of the

clover valence fermions of the GBT and linear-regressor

model at ppred ¼ 5, zpred ¼ 3 are shown in Fig. 22. The

linear model gives a slightly better results. In Table VI, two-

point and three-point correlator data at pin ¼ 4, zin ¼ 2,

tsep ¼ 8 are used for predicting ppred¼2, zpred ¼ 3, tsep ¼ 8

correlator. The data at insertion time t ¼ 4 are shown.

Compared with the overlap-fermion result in Table V, the fit

FIG. 22. The observed/predicted gluon-correlator ratios of the clover valence fermions at ppred ¼ 5, zpred ¼ 3 from pin ¼ 4, zin ¼ 3

(upper) and ppred ¼ 5, zpred ¼ 3 from pin ¼ 5, zin ¼ 2 (lower) by using Ntr ¼ 2880, NBC ¼ 2880, Nul ¼ 230400, r ¼ 0.2, and

Nest ¼ 200. The GBT and linear-regressor results are shown in the left and right columns, respectively. The predictions with bias

correction do not much improve the raw predictions.

TABLE VI. Observations and predictions of gluon-correlator ratio for the clover valence fermions and predictions at ppred ¼ 5,

zpred ¼ 3, tsep ¼ 8, t ¼ 4 using Ntr ¼ 2880, NBC ¼ 2880, Nul ¼ 23040, r ¼ 0.2, and Nest ¼ 200. The linear model shows a better fit

variance than GBT.

Type Input Method Rtr Rpred Rpred;BC Rul Fv

p-pred pin ¼ 4, zin ¼ 3 GBT 0.26(19) 0.300(91) 0.296(92) 0.307(72) 0.733(62)

linear 0.26(19) 0.28(11) 0.279(98) 0.307(72) 0.845(60)

z-pred pin ¼ 5, zin ¼ 2 GBT 0.26(19) 0.26(11) 0.27(11) 0.307(72) 0.704(62)

linear 0.26(19) 0.27(11) 0.29(10) 0.307(72) 0.819(51)
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variance is much higher, due to the input data having

stronger correlations with the target data.

IV. SUMMARY

In this article, we applied the ML technique to quasi-DA

and quasi-PDF correlators. Using both GBT model and

linear model, we tried to predict the C2pt for meson quasi-

DAs and the C3pt for meson and gluon quasi-PDFs at larger

momenta and link lengths, which are noisier and need more

computational resources. By predicting from the computa-

tionally less expensive data, we are able to reduce the

computational cost. Systematic uncertainties from the ML

prediction errors are converted to the statistical uncertain-

ties by using the bias-correction procedure. With the full

bootstrap resampling, we effectively estimated and com-

pared the errors of different model predictions.

Table VII summarizes the best fit variances Fv of all

predictions we investigated. It is observed that for meson

datasets, the data from different links are more correlated

than those of different momenta. Consequently, the z
predictions for both models work much better than p
predictions. The ML approach on the z prediction of quasi-
DAs and meson quasi-PDFs is very precise, while the p
predictions and the predictions for gluon quasi-PDFs show

relatively worse precision. By comparing two ML regres-

sion models, we find that the linear model is preferred on

cleaner datasets when the correlations between input data

and target data are good enough, such as the z prediction of
meson-DAs and meson PDFs. On the other hand, the GBT

model is more robust to noisy and less-obviously correlated

inputs. For the p prediction of meson quasi-PDFs, both

models are able to give a computational cost reduction

of 16%.
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